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I.inear and planar arrays of coupled oscillators have been proposed
as means of achieving high power rf sources through coherent
spatial power combining. [ 1 ][2] In such applications, a uniform
phase distribution over the aperture is desired. IIowcvcr,  it has
been shown that by dctuning some of the oscillators away from the
oscillation frequency of the ensemble of oscillators, one may
achieve other useful aperture phase distributions. [3] Notable
almong these are linear phase clistributions resulting in steering of
the output rf beam away from the broadside direction. “1’hc thco~y
describing the operation of such arrays of coupled oscillators is
cluitc complicated since the phenomena involved arc inhercnt]y
nonlinear. This has made it difficult to develop an intuitive
unc]erstanding of the impact of oscillator tuning on phase control
and has thus impeded practical application. I
simplified thco]y  i s dcvclopccl  w h i c h  facilil
unclcrstancling  by establishing an analog of the
problem in terms of electrostatics.

We begin by reviewing the nonlinear equations
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describing the
behavior of an array of loosely coupled oscillators. [2] ‘l’he behavior
of the phase of a single oscillator injection locked to an input
signal,

Vin, = Ai,je’(”’’ti” “w) =- Ai,,c’o’v

can be described by the following differential equation.

(7’0-. ..-=
d

tiIO -I AO+M+ sin(~fl, - O)

where O = (D i -t # , ~ is the phase of the oscillator oscillating at
frequency, (0, and
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the locking bandwidth which is inversely proportional to the Q of
the oscillator and A, the amplitude of the oscillation. Now, for an
array of N coupled oscillators, the injection signals arc just the
outputs of the other oscillators and the phase of the i~l oscillator is
described by a differential equation of the form,

can c1 co e “’u is the coupling Mwccn oscillators i and j. limiting the

coupling to nearest neighbors and taking the continuum limit as
the nulmbcr  of oscillators incrcascs to infinity and the spacing
dccrcascs  to zero (i becomes a continuous variable, x), results in,

where A@h, is the mutual locking bandwidth of the coupled
oscillators and <co > is the average of the oscillator tuning
frcqucncics, co(x). In steady state with small phase diffcrcnccs
bctwccn neighboring oscillators, o~ic has,

which is Poisson’s equation of electrostatics! Similarly for a two
clirncnsional  array onc obtains a two dimensional I’oisson
equation. From this point, all of the familiar results of
electrostatics apply if one merely iclcntifics  the oscillator tuning
with charge density and the phase distribution with electrostatic
potential.

I+’or cxa~mplc,  suppose that wc dctunc the oscillators at each end of
a linear array in opposite direction with respect to the average
tuning frcqu.cncy  with the intention of steering the beam as
described by I.iao and York. [3] This can bc rcprcscntcd as two
delta function charge densities of opposite sign onc at each end of
the aperture. The solution for the phase distribution is merely a



linear function as shown in P’igurc  1. yiclcling the desired steering
of the beam. This linear solution may, of course, be recognized as
the potential in a parallel plate capacitor. F’or comparison, the
dots in Figure 1 reprcscmt  the solution of the full nonlinear
equations with no approximation.

Note that if the two delta functions have the same sign, the average
of the tuning frequencies is changed resulting in a constant charge
distribution in adclition  to the deltas. This constant term yiclcls  a
quadratic SOIU tion for the phase distribution as shown in Figure 2,
Of course, various ratios of delta function amplitudes yield
corresponding combinations of linear and quadratic solutions such
as the one indicated in Figure 3. Similar results obtain for two
dimensional arrays wherein, for example, various cletunings of the
oscillators on the perimeter of the array yield phase distributions
which are solutions of the two dimensional l’oisson equation with
delta functions ancl constants as sources. Such a phase
distribution is illustrated in F’igurc 4. This resulted from dctuning
of all the pcrirnetcr  oscillators by the same amount.

1{’ina]ly,  it is noted that this sirnplifiml  theory makes clear the fact
that any desired slowly varying phase distribution can be realized
if one is willing to dctune all of the oscillators. The appropriate
tuning can be ascertain cc] by substituting the clesirecl  phase
distribution into l’oisson’s  cc~uation and determining the resulting
charge clistribution.
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}+’igure 1. Equal  and
opposite dctuni]qg  of the end
oscillators.

Irigure2.  E;qud dctuningof
the end oscillators.

I;iguIe 3. U:2eqLl<ticletLl]lir~~
of end oscillator-s.
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